Annual Drinking Water Quality Report for 2022 Town of Richland P.O. Box 29, 1 Bridge Street, Pulaski, NY 13142 Public Water Supply ID # 3730165

INTRODUCTION

To comply with State and Federal regulations, The Town of Richland will be issuing an annual report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water awareness and the need to protect our drinking water sources.

Last year, your tap water met all State drinking water health standards. We are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. If you have any questions about this report or concerning your drinking water, please contact. Kern Yerdon, Town Supervisor at (315) 298-5174. We want you to be informed about your drinking water, and we will be available to discuss any drinking water issues in person.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the New York State Department of Health (NYS DOH) and the Environmental Protection Agency (EPA) prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The NYS DOH and the Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

FACTS AND FIGURES:

Our water system serves over 4,000 people through 1,110 service connections. The Town's water source consists of five drilled wells located at the Richland well field and two drilled wells located at the Fernwood well field. Water from the wells is pumped into one 150,000-gallon elevated water storage tank located at the Fernwood site, one 150,000-gallon elevated water storage tank located on County Route 5, and into an additional 314,000-gallon storage tank located at the Richland well field site. The Town has an average daily production of 392,505 gallons per day. Additional production is also provided to seasonal customers between the months of May and September. The water is disinfected with liquid sodium hypochlorite (Chlorine) using an injection pump at the Fernwood well field site and is disinfected with chlorine generated on-site at the Richland well field site. Construction of Water District #5 started in 2020 and was completed in 2022.

SOURCE WATER ASSESSMENT:

A source water assessment has not been completed by the NYSDOH for our system. We will provide this information to our customers as soon as it becomes available.

County and State Health Departments will use this risk assessment information to direct future source water protection activities. These may include water quality monitoring, wellhead protection, resource management, planning, and education programs. A copy of the assessment can be obtained by contacting us, as noted below.

ARE THERE CONTAMINANTS IN OUR DRINKING WATER?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Oswego County Health Department at (315) 349-3557.

WHAT DOES THIS INFORMATION MEAN?

As you can see by the table, our system had no violations during 2022.

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During 2022, our system was in compliance with applicable State drinking water operating, monitoring, and reporting requirements.

DO I NEED TO TAKE PRECAUTIONS? IS OUR WATER SAFE FOR EVERYONE?

Although our drinking water met or exceeded State and Federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia, and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791). Please note that testing of the water at this system has shown that this water is suitable for drinking water purposes, and contains very low amounts of contaminants and should not pose any health risks.

Table Of Detected Compounds										
Contaminant	Violati on (Yes/N o)	Date of Sample	Detected (Avg/Max Range)	Unit Measure-	MCLG	Regulatory Limit (MCL, TT, or	Likely Source of Contamination			
Inorganic Co		<u> </u>	Narige)	ment	INCLG	AL)	Contamination			
Copper **	No	Aug-21	118 ug/L (18 - 124)	ppb	1,300 ug/L	AL = 1,300 ug/L	Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives.			
Lead **	No	8/16/2021	1.5 ug/L (ND - 1.7)	ppb	15	AL = 1,300 ug/L	Corrosion of household plumbing systems; Erosion of natural deposits			
Nitrate (As Nitrogen) Fernwood Wells	No	8/15/2022	1.86 mg/L	ppm	10 mg/l	10,000 mgl	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			
Nitrate (As Nitrogen) Schoeller Wells	No	8/15/2022	0.408 mg/L	ppm	10 mg/l	10,000 mgl	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			
Barium*	No	9/18/2020	9.15 ug/L (8.2 - 10.1)	ppb	2000 ugl	2000 ug/l	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.			
Chloride*	No	9/18/2020	8.12 mg/L (6.24 - 10)	ppm	N/A	250mg/L	Naturally occurring or indicative of road salt.			
Chromium*	No	8/18/2018	1.15 ug/L (1.1-1.2)	ppb	100 ugl	100 ug/l	Discarge from steel and pulp mills; erosion of natural deposits.			
Iron*	No	9/18/2020	0.078 mg/L	mg/L	N/A	0.3 mg/l	Naturally occurring			
Manganese*	No	9/18/2020	0.0011 mg/L	mg/L	N/A	0.3 mg/l	Naturally occurring or indicative of landfill contamination			
Mercury*	No	9/18/2020	0.0003 mg/L	mg/L	0.002 mg/l	0.002 mg/l	Discharge from refineries and factories; Erosion of natural deposits Runoff from landfills and cropland			
Sodium***	No	9/18/2020	4.31 mg/L (3.19-5.43)	mg/L	N/A	N/A	Naturally occurring, road salt, water softener treatment, animal waste.			
Sulfate*	No	9/18/2020	6.75 mg/L (4.38-9.12)	mg/l	N/A	N/A	Naturally occurring.			
Zinc*	No	9/18/2020	0.0127 mg/L	mg/L	N/A	5.00	Naturally occurring; Mining waste			
Trihalomethanes TTHM*	No	8/15/2022	4 ug/L	ug/L	N/A	80 ug/l	By-product of drinking water disinfection			
Haloacetic Acids (HAA5)*	No	8/15/2022	ND	ug/L	N/A	60ug/L	By-product of drinking water disinfection			

Radioactive Contaminants										
Radium 226 & 228 Schoeller	No	8/15/2022	0.715	pCi/L	0pCi/L	5pCi/L^3	Erosion of natural deposits			
Radium 226 & 228 Fernwood	No	8/15/2022	0.76	pCi/L	0pCi/L	5pCi/L^3	Erosion of natural deposits			
Gross Alpha Fernwood	No	8/15/2022	-0.598	pCi/L	0pCi/L	15pCi/L	Decay of natural deposits and man- made emissions			
Gross Alpha Schoeller	No	8/15/2022	0.17	pCi/L	0pCi/L	15pCi/L	Decay of natural deposits and man- made emissions			

Notes:

- * Laboratory results from Town of Richland raw water samples collected from Fernwood and Schoeller well fields.
- ** The levels presented for copper and lead represents the 90th percentile of the 10 sites tested. A percentile is a value on a scale of 100 that indicates the percent of the distribution that is equal to or below it. The 90th percentile value is equal to or greater than 90% of the values detected in your water system. In this case 10 samples were collected and the 90th percentile value was the second highest value. The action level for lead and for copper was not exceeded any of the sites tested.
- *** No State standards exist for levels of sodium in public drinking water. However, the State recommends that water containing more than 20,000 ppb of sodium not be used for drinking by people on severely restricted sodium diets. Water containing more than 250,000 ppb of sodium should not be used for drinking by people on moderately restricted sodium diets.

DEFINITIONS:

Action Level – The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal – The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Non-Detects (ND or <number value) — Laboratory analysis indicates that the tested compound is not present in the sample.

Parts per million (ppm) or Milligrams per liter (mg/L) – Corresponds to one part of liquid in one million parts of liquid (parts per million – ppm). Or one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) – Corresponds to one part of liquid in one billion parts of liquid (parts per billion – ppb). Or one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - A measure of radioactivity in water.

INFORMATION FOR NON-ENGLISH-SPEAKING RESIDENTS

Spanish:

Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

French:

Ce rapport contient des informations importantes sur votre eau potable. Traduisez le ou parlez en avec quelqu'un qui le comprend bien.

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

- Saving water saves energy and some of the costs associated with both of these necessities of life;
- Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and
- Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire fighting needs are met you can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:
- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So, get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it up and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.

CLOSING

Thank you for allowing us to continue providing your family with quality drinking water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary to address improvements. We ask that all our customers help us protect our water sources, which are the heart of our community.